

BUDDHA INSTITUTE OF TECHNOLOGY, GIDA, GORAKHPUR DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CLASS TEST-1 (EVEN SEMESTER 2022-23)

April-2023

Course: B.Tech			Semester: 6		
Subject: Antenna & Wave Propagation			Subject Code:	KEC-603	
M.M.: 30	Time:	2:00 hrs		Roll No	

SECTION-A

1. Attempt all questions. Each questions carry equal marks.		Marks: 5*1=5	
Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Express the point in cylindrical and spherical coordinates: P(1,-4,2)	L2	(CO1)
b.	Express the value of differential length and area in cylindrical coordinate.	L2	(CO1)
c.	Find the gradient of scalar field: Y = $\rho^2 z cos 2\phi$	L3	(CO1)
d.	Define the Stokes theorem.	L2	(CO1)
e.	State the Gauss's law and derive the related Maxwell equation.	L2	(CO2)

SECTION-B

2. Attempt all questions. Each questions carry equal marks. Marks: 3*5= 15 Course Level of Q. No. Question Outco Taxonomy me Transform a vector A= y $\widehat{a_x}$ - x $\widehat{a_y}$ + z $\widehat{a_z}$ into cylindrical Coordinates. L3 (CO1) a. OR Find constant a, b and c so that V= (x+2y+az) $\widehat{a_x}$ + (bx-3y-z) $\widehat{a_y}$ + L3 (CO1) a. (4x+cy+2z) $\widehat{a_z}$ is irrotational. Discuss curl, divergence and gradient in different co-ordinates System. b. OR (CO1) L3 b. Give the physical interpretation of divergence and curl of Vector. (CO1) L3 c. (CO2) A circular ring of radius a carries a uniform charge $\, ho_{_L}$ C/m and is L3 placed on the xy-plane with axis the same as the z-axis. Show that

$E(0,0,h) = \frac{\rho_{L}ah}{2\varepsilon_{0}(h^{2}+a^{2})^{\frac{3}{2}}}a_{Z}$	

SECTION-C

3. Attempt any all questions. Each questions carry equal marks.		Marks: 2*5=10	
0 No	lo. Question	Level of	Course
Q. No.		Taxonomy	Outcome
a.	Given vector field $\vec{G} = 8sin\phi \hat{a_r}$ in spherical coordinate. Transform		
	it into cylindrical coordinate.	L3	(CO1)
	OR		
a.	Find the divergence and curl of the vector field:		
	$\overrightarrow{V} = \rho^2 z \widehat{a_{\rho}} + \rho^3 \widehat{a_{\phi}} + 3\rho z^2 \widehat{a_z}$	L3	(CO1)
b.	Given that $\vec{D} = z\rho_{COS}^2 \phi \widehat{a_z} C/m^2$, calculate the charge density	L3	
			(CO2)
	at $(1, \pi/4, 3)$ and the total charge enclosed by the cylinder of radius		
	$1 \text{m with } -2 \leq z \leq 2m.$		

Note: Revised Bloom's Taxonomy Levels-

L1->Remembering, L2->Understanding, L3->Applying, L4->Analyzing, L5->Evaluating, L6-> Creating.