BUDDHA INSTITUTE OF TECHNOLOGY, GIDA, GORAKHPUR DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING CLASS TEST-1 (EVEN SEMESTER 2022-23)

April-2023

Course: B.Tech
Subject: Antenna \& Wave Propagation
M.M.: 30

Semester: 6

Subject Code:
KEC-603

Roll No. \qquad

SECTION-A

1. Attempt all questions. Each questions carry equal marks.

Marks: 5*1=5

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Express the point in cylindrical and spherical coordinates: $\mathrm{P}(1,-4,2)$	(CO1)	
b.	Express the value of differential length and area in cylindrical coordinate.	$\mathbf{L 2}$	(CO1)
c.	Find the gradient of scalar field: $\mathrm{Y}=\rho^{2} z \cos 2 \varphi$	$\mathbf{L 3}$	(CO1)
d.	Define the Stokes theorem.	$\mathbf{L 2}$	(CO1)
e.	State the Gauss's law and derive the related Maxwell equation.	$\mathbf{L 2}$	(CO2)

SECTION-B

2. Attempt all questions. Each questions carry equal marks.

Marks: 3*5=15

Q. No.	Question	Level of Taxonomy	Course Outco me
a.	Transform a vector $\mathrm{A}=\mathrm{y} \widehat{a_{x}}-\mathrm{x} \widehat{a_{y}}+\mathrm{z} \widehat{a_{z}}$ into cylindrical Coordinates. OR	L3	(CO1)
a.	Find constant a, b and c so that $\mathrm{V}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \widehat{a_{x}}+(\mathrm{bx}-3 \mathrm{y}-\mathrm{z}) \widehat{a_{y}}+$ $(4 x+c y+2 z) \widehat{a_{z}}$ is irrotational.	L3	(CO1)
b.	Discuss curl, divergence and gradient in different co-ordinates System. OR	L3	(CO1)
b.	Give the physical interpretation of divergence and curl of Vector.	L3	(CO1)
c.	A circular ring of radius a carries a uniform charge $\rho_{L} \mathrm{C} / \mathrm{m}$ and is placed on the xy-plane with axis the same as the z-axis. Show that	L3	(CO2)

	$E(0,0, h)=\frac{\rho_{L} a h}{2 \varepsilon_{0}\left(h^{2}+a^{2}\right)^{\frac{3}{2}}} a_{z}$		

SECTION-C

3. Attempt any all questions. Each questions carry equal marks.

Marks: 2*5=10

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Given vector field $\vec{G}=8 \sin \phi \widehat{a_{r}}$ in spherical coordinate. Transform it into cylindrical coordinate.	L3	(CO1)
a.	Find the divergence and curl of the vector field: $\vec{V}=\rho^{2} z \widehat{a_{\rho}}+\rho^{3} \widehat{a_{\varnothing}}+3 \rho z^{2} \widehat{a_{z}}$	L3	(CO1)
b.	Given that $\vec{D}=z \rho \operatorname{COS}^{2} \phi \widehat{a_{z}} C / m^{2}$, calculate the charge density at $\left(1, \pi / 4^{\prime}, 3\right)$ and the total charge enclosed by the cylinder of radius $1 m$ with $-2 \leq z \leq 2 m$.	L3	(CO2)

Note: Revised Bloom's Taxonomy Levels-
L1->Remembering, L2->Understanding, L3->Applying, L4->Analyzing, L5->Evaluating, L6-> Creating.

